

	PDF Tools	All PDF Tools
	PDF Studio
	PDF Studio Viewer (Free)
	PDF Automation Server

	PDF Libraries	All PDF Libraries
	Why Choose Qoppa’s PDF Libraries
	jOfficeConvert
	jPDFAssemble
	jPDFFields
	jPDFImages
	jPDFOptimizer
	jPDFPreflight
	jPDFPrint
	jPDFProcess
	jPDFSecure
	jPDFText
	jPDFWriter
	jPDFWeb

	PDF Viewers	Free PDF Reader App
	All PDF Components
	Web PDF Viewer / Markup
	jPDFEditor
	jPDFNotes
	jPDFViewer
	Why Choose Qoppa’s PDF Components

	PDF Services	PDF Cloud Services
	PDF Consulting Services

	Company	About Us
	Case Studies
	Contact Us
	Customers
	Jobs
	News
	Partners
	Resellers

— Main Menu —
PDF Tools
- All PDF Tools
- PDF Studio
- PDF Studio Viewer (Free)
- PDF Automation Server
PDF Libraries
- All PDF Libraries
- Why Choose Qoppa’s PDF Libraries
- jOfficeConvert
- jPDFAssemble
- jPDFFields
- jPDFImages
- jPDFOptimizer
- jPDFPreflight
- jPDFPrint
- jPDFProcess
- jPDFSecure
- jPDFText
- jPDFWriter
- jPDFWeb
PDF Viewers
- Free PDF Reader App
- All PDF Components
- Web PDF Viewer / Markup
- jPDFEditor
- jPDFNotes
- jPDFViewer
- Why Choose Qoppa’s PDF Components
PDF Services
- PDF Cloud Services
- PDF Consulting Services
Company
- About Us
- Case Studies
- Contact Us
- Customers
- Jobs
- News
- Partners
- Resellers

	

Home » jPDFViewer » Guide
	 jPDFViewer
jPDFViewer

™

Bean to embed in your Java applications and applets to view PDF documents.
 TRY LIVE DEMO

jPDFViewer Developer Guide

Home » jPDFViewer » Guide
jPDFViewer Developer Guide

Contents
Introduction
 Getting Started
 Opening a Document
 Customizing the Toolbar
 Working with Form Fields
 Additional Functions
 Distribution and JAR Files
Javadoc API
 Source Code Samples
 End-User Guide

Introduction
jPDFViewer is a Java bean that can be embedded in Java applications to deliver PDF content to your users without the need to install any third party programs or drivers. jPDFViewer integrates seamlessly into your application and delivers the most features, performance and reliability of any Java PDF viewer.
By using jPDFViewer to display your documents, your application has greater control over your PDF content. For instance, the PDF content can be created runtime and can be delivered directly to the viewer through a URL or an input stream without using any temporary files on the local computer. This can be useful when you need to prevent your users from being able to make copies of the files. Additionally, jPDFViewer gives you greater control over the navigation toolbar and its functions, such as printing.

Getting Started
jPDFViewer provides a standard Java bean that can be added to any GUI container, the bean class is com.qoppa.pdfViewer.PDFViewerBean. The bean can be added to a container either programmatically or using any standard GUI editor in your development environment. Once the bean has been added, your application can start showing PDF documents by either loading PDF documents programmatically, based on its own logic, or by letting users open their own PDF documents by clicking on the open button in the toolbar.
The host application can also customize the toolbar by calling the getToolbar() method and removing or adding buttons, override the button handlers, or even hiding the entire toolbar. Action handlers on the toolbar buttons can be overridden to provide custom code to handle the functions. For example, your application can override the open function to show the user a limited list of PDF documents that can be opened.

Opening a Document
Loading and displaying a document programmatically is very simple using jPDFViewer. Once a PDFViewer bean has been added to a container, the host application simply needs to call one of the loadPDF methods in PDFViewerBean and the library will load and display the first page of the document. The three versions of the loadPDF method take a file name, a URL or an InputStream as parameters
	PDFViewerBean bean = getViewerBean ();
bean.loadPDF ("c:\\test.pdf");

PDFViewerBean bean = getViewerBean ();
bean.loadPDF ("c:\\test.pdf");

Customizing the toolbar
The toolbar in jPDFViewer can be shown or hidden according to the needs of host application. Additionally, all the buttons in the toolbar are accessible, so they can be enabled/disabled or hidden. The PDFViewerBean class provides a method, getToolbar that returns a reference to the toolbar, a PDFToolbar object. PDFToolbar extends JToolBar and provides methods to access each of the buttons individually. Please refer to the API for more detail.
The following examples assume that viewerBean is a reference to a PDFViewerBean:
To hide the toolbar:
	viewerBean.getToolbar().setVisible (false);

viewerBean.getToolbar().setVisible (false);

To hide the open button:
	viewerBean.getToolbar().getjbOpen ().setVisible (false);

viewerBean.getToolbar().getjbOpen ().setVisible (false);

To disable the print button:
	viewerBean.getToolbar().getjbPrint().setEnabled (false);

viewerBean.getToolbar().getjbPrint().setEnabled (false);

Working With Form Fields
Fields in a PDF file are contained in what Adobe calls an AcroForm. jPDFViewer provides access to an AcroForm object from the PDFViewerBean class and through this object, the host application can get the fields present in the document and get or set their data.
To get a reference to the AcroForm, the host application needs to call PDFViewerBean.getAcroForm. The method returns an object of type com.qoppa.pdf.AcroForm. The host application can then use this object to get the list of fields in the PDF document and to get individual fields by name. The field objects in turn have methods to get or set their current value.

Additional Functions
jPDFViewer provides a number of additional functions to work with and manipulate PDF documents. The library provides these functions by giving access to an interface class that represents the underlying PDF document. The PDFViewerBean.getDocument method returns an object that implements com.qoppa.pdf.dom.IPDFDocument. Some of the information and functions this object provides are:
	Get information about the PDF document such as the author, creation date and more – IPDFDocument.getDocumentInfo()
	Print the PDF document programmatically by calling – IPDFDocument.print()
	Get the bookmark tree (the table of contents) – IPDFDocument.getRootBookmark()
	Get information about each page – IPDFDocument.getIPage(). This method returns an object that implements IPDFPage
	Get each page’s size, crop box, trim box and bleed box – IPDFPage.getMediaBox(), IPDFPage.getCropBox(), IPDFPage.getTrimBox(), IPDFPage.getBleedBox()
	Export each page to an image – IPDFPage.getImage()
	Get a list of annotations in a page – IPDFPage.getAnnotations()

Distribution and JAR Files
Required and optional jar files for jPDFViewer can be found on the jPDFViewer Download page.
Javadoc API
 Source Code Samples
 End-User Guide

Help

	Developer Guide
	End-User Guide
	Javadoc API
	Code Samples
	Knowledge Base

Related Products

	jPDFNotes PDF Markup & Form Fill Component
	jPDFEditor PDF View & Edit Component
	Web PDF Viewer & Markup
	PDF Studio Desktop PDF Editor

Java PDF Library Products
jPDFImages – Convert PDFs to Image
jPDFOptimizer – Optimize PDFs
jPDFPrint – Print PDFs
jPDFProcess – Create / Manipulate PDFs
jPDFWeb – Convert PDF to HTML
jPDFWriter (FREE!) – Create PDFs
Java PDF SDK …

Java PDF Component Products
jPDFEditor – View and Edit PDFs
jPDFNotes – View and Markup PDFs
jPDFViewer – View and Print PDFs

PDF Applications
Free PDF Reader
PDF Studio – PDF Editor
PDF Automation Server

Industries
Banks & Financial Institutions
Insurance Companies & Organizations
Web Development
Document Management
Education
Printing, Media & Publishing

PDF Solutions
Assemble, Merge, Split PDF
Convert PDF to HTML
Convert PDF to Images
Convert Word to PDF
Digitally Sign PDF
Edit Content in PDF
Fill PDF Forms & Extract Data
OCR PDF Documents
Optimize PDF Documents
Preflight PDF Documents
Print PDF Documents
Redact PDF Documents
View & Annotate PDF
Watermarks, Headers & Footers
Case Studies / White Papers

Company
About Us
Contact Us
Customers
Privacy
News
Resellers

 Support
PDF Studio Knowledge Base
Developer Knowledge Base
Contact Support

Powered by Apryse, Producer of the Market's Leading PDF SDK

 All Qoppa's products are trademarks of Qoppa Software.

	
	
	
	
	
	

 Translate »

	
	
	
	
	
	
	

